Math 347 Worksheet Lecture 10: Properties of functions September 21, 2018

- 1) Recall from Homework 1 that a subset $S \subseteq A \times B$ defines a function $f : A \to B$, only if for all $a \in A$ the set $S \cap p_1^{-1}(a)$ has a single element, where $p_1 : A \times B \to A$ is $p_1((a, b)) = a$. Find a (further) condition on S that guarantees that:
 - (i) f is injective;
 - (ii) f is surjective;
 - (iii) f is bijective.
- 2) Consider a function f from \mathbb{R} to itself. Prove that if f is strictly monotone¹ then f is injective. Is f surjective as well?
- 3) Let $S = \{1, ..., n\}$, consider A the set of subsets of S with an even number of elements and B the set of subsets of S with an odd number of elements. Prove that |A| = |B|, i.e. give a bijection between A and B.
- 4) Given real numbers a, b, c and d consider the following function

$$f(x,y) = (ax+b, cx+d)$$

from \mathbb{R}^2 to \mathbb{R}^2 . Prove that f is injective if and only if f is surjective.

- 5) Given $f : A \to B$, $g : B \to C$ and $h = g \circ f$, prove or find a counter-example to the following statements:
 - (i) if h is injective, then f is injective;
 - (ii) if h is injective, then g is injective;
 - (iii) if h is surjective, then f is surjective;
 - (iv) if h is surjective, then g is surjective.
- 6) Let f be a function from a set A to itself. Suppose that A is a finite set. Prove that f is injective if and only if f is surjective. Show that this fails if A is infinite.
- 7) Show that $f : \mathbb{Z} \to \mathbb{N}$ as defined below is bijective:

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0, \\ -2n - 1 & \text{if } n < 0. \end{cases}$$

8) Consider f, g, h functions from a set A to itself. We say that a function f has the *left cancelation* property if

$$f \circ g = f \circ h \Rightarrow g = h$$

Analogously, f has the right cancelation property if

$$g \circ f = h \circ f \Rightarrow g = h.$$

- (a) Prove that f has the left cancelation property if f is injective.
- (b) Is it the case that f has the left cancelation property only if f is injective?
- (c) Prove that f has the right cancelation property if f is surjective.
- (d) Is it the case that f has the right cancelation property only if f is surjective?

¹Look up the definition of that if you need to.